He who seeks for methods without having a definite problem in mind seeks in the most part in vain.
David HilbertI do not want to presuppose anything as known. I see in my explanation in section 1 the definition of the concepts point, straight line and plane, if one adds to these all the axioms of groups i-v as characteristics. If one is looking for other definitions of point, perhaps by means of paraphrase in terms of extensionless, etc., then, of course, I would most decidedly have to oppose such an enterprise. One is then looking for something that can never be found, for there is nothing there, and everything gets lost, becomes confused and vague, and degenerates into a game of hide and seek.
David HilbertA mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, and ultimately a reminder of our pleasure in the successful solution.
David HilbertI have tried to avoid long numerical computations, thereby following Riemann's postulate that proofs should be given through ideas and not voluminous computations.
David HilbertBesides it is an error to believe that rigour is the enemy of simplicity. On the contrary we find it confirmed by numerous examples that the rigorous method is at the same time the simpler and the more easily comprehended. The very effort for rigor forces us to find out simpler methods of proof.
David Hilbert